Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(23): 6772-6793, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37578632

RESUMO

In northern peatlands, reduction of Sphagnum dominance in favour of vascular vegetation is likely to influence biogeochemical processes. Such vegetation changes occur as the water table lowers and temperatures rise. To test which of these factors has a significant influence on peatland vegetation, we conducted a 3-year manipulative field experiment in Linje mire (northern Poland). We manipulated the peatland water table level (wet, intermediate and dry; on average the depth of the water table was 17.4, 21.2 and 25.3 cm respectively), and we used open-top chambers (OTCs) to create warmer conditions (on average increase of 1.2°C in OTC plots compared to control plots). Peat drying through water table lowering at this local scale had a larger effect than OTC warming treatment per see on Sphagnum mosses and vascular plants. In particular, ericoid shrubs increased with a lower water table level, while Sphagnum decreased. Microclimatic measurements at the plot scale indicated that both water-level and temperature, represented by heating degree days (HDDs), can have significant effects on the vegetation. In a large-scale complementary vegetation gradient survey replicated in three peatlands positioned along a transitional oceanic-continental and temperate-boreal (subarctic) gradient (France-Poland-Western Siberia), an increase in ericoid shrubs was marked by an increase in phenols in peat pore water, resulting from higher phenol concentrations in vascular plant biomass. Our results suggest a shift in functioning from a mineral-N-driven to a fungi-mediated organic-N nutrient acquisition with shrub encroachment. Both ericoid shrub encroachment and higher mean annual temperature in the three sites triggered greater vascular plant biomass and consequently the dominance of decomposers (especially fungi), which led to a feeding community dominated by nematodes. This contributed to lower enzymatic multifunctionality. Our findings illustrate mechanisms by which plants influence ecosystem responses to climate change, through their effect on microbial trophic interactions.


Assuntos
Sphagnopsida , Traqueófitas , Ecossistema , Sibéria , Europa (Continente) , Solo , Água
2.
Ecol Evol ; 11(14): 9530-9542, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34306640

RESUMO

The mechanisms behind the plant litter mixture effect on decomposition are still difficult to disentangle. To tackle this issue, we used a model that specifically addresses the role of the litter moisture content. Our model predicts that when two litters interact in terms of water flow, the difference of evaporation rate between two litters can trigger a nonadditive mixture effect on decomposition. Water flows from the wettest to the driest litter, changing the reaction rates without changing the overall litter water content. The reaction rate of the litter receiving the water increases relatively more than the decrease in the reaction rate of the litter supplying the water, leading to a synergistic effect. Such water flow can keep the microbial biomass of both litter in a water content domain suitable to maintain decomposition activity. When applied to experimental data (Sphagnum rubellum and Molinia caerulea litters), the model is able to assess whether any nonadditive effect originates from water content variation alone or whether other factors have to be taken into account.

3.
ACS Omega ; 5(23): 14013-14029, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32566868

RESUMO

This work investigates the relation between the molecular composition of the organic matter (OM), hydrocarbon generation, and porosity of artificially matured mudstones from the Kimmeridge Clay formation. Anhydrous thermal maturations, geochemical characterization (gas chromatography-mass spectrometry, gas chromatography with a thermal conductivity detector), scanning electron microscopy observations, and nitrogen adsorption measurements were carried out. The results were compared to the calculated OM porosity after maturation. Our results reveal that samples richer in phytoplanktonic OM generated more abundant oils enriched in alkanes and lighter aromatic hydrocarbons (i.e., biphenyls and naphthalenes) that are more able to fill the adjacent pores of the mineral matrix during maturation. Both the calculated and the observed OM porosity increases during maturation, but the measured rock pore volume shows a non-linear evolution related to the amount of gas generated and the ensuing ability of the rock to preserve the pores. The secondary cracking of highly oil-prone samples generated larger amounts of C1-C5 gases but lower pore volumes, less well preserved. OM composition and its ability to generate oil and gas seem therefore to affect the pore volume. These variations are nevertheless small compared to the effect of thermal maturity, which remains the major process controlling the evolution of porosity. During gas generation, high C2-C5 concentrations are generated compared to methane. The short thermal maturation duration of our experiments may have delayed the conversion of C2-C5 hydrocarbons to methane. In addition, slight differences in the concentrations of saturated and aromatic components and markedly different pore volumes and pore size distributions exist between artificially and naturally matured rocks. The conditions of artificial maturations may thus impact the thermal transformations of OM, emphasizing the necessity to investigate the role of the artificial maturation kinetics on OM and porosity.

4.
J Environ Sci (China) ; 77: 264-272, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30573090

RESUMO

Plant communities play an important role in the C-sink function of peatlands. However, global change and local perturbations are expected to modify peatland plant communities, leading to a shift from Sphagnum mosses to vascular plants. Most studies have focused on the direct effects of modification in plant communities or of global change (such as climate warming, N fertilization) in peatlands without considering interactions between these disturbances that may alter peatlands' C function. We set up a mesocosm experiment to investigate how Greenhouse Gas (CO2, CH4, N2O) fluxes, and dissolved organic carbon (DOC) and total dissolved N (TN) contents are affected by a shift from Sphagnum mosses to Molinia caerulea dominated peatlands combined with N fertilization. Increasing N deposition did not alter the C fluxes (CO2 exchanges, CH4 emissions) or DOC content. The lack of N effect on the C cycle seems due to the capacity of Sphagnum to efficiently immobilize N. Nevertheless, N supply increased the N2O emissions, which were also controlled by the plant communities with the presence of Molinia caerulea reducing N2O emissions in the Sphagnum mesocosms. Our study highlights the role of the vegetation composition on the C and N fluxes in peatlands and their responses to the N deposition. Future research should now consider the climate change in interaction to plants community modifications due to their controls of peatland sensitivity to environmental conditions.


Assuntos
Ciclo do Carbono/efeitos dos fármacos , Ciclo do Nitrogênio/efeitos dos fármacos , Nitrogênio/farmacologia , Poaceae/química , Poaceae/efeitos dos fármacos , Sphagnopsida/química , Sphagnopsida/efeitos dos fármacos , Fertilizantes/análise , Fixação de Nitrogênio/efeitos dos fármacos
5.
Nat Commun ; 9(1): 1748, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700326

RESUMO

The original version of this Article contained an error in the first sentence of the Acknowledgements section, which incorrectly referred to the Estonian Research Council grant identifier as "PUTJD618". The correct version replaces the grant identifier with "PUTJD619". This has been corrected in both the PDF and HTML versions of the Article.

6.
Nat Commun ; 9(1): 1135, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29555906

RESUMO

Nitrous oxide (N2O) is a powerful greenhouse gas and the main driver of stratospheric ozone depletion. Since soils are the largest source of N2O, predicting soil response to changes in climate or land use is central to understanding and managing N2O. Here we find that N2O flux can be predicted by models incorporating soil nitrate concentration (NO3-), water content and temperature using a global field survey of N2O emissions and potential driving factors across a wide range of organic soils. N2O emissions increase with NO3- and follow a bell-shaped distribution with water content. Combining the two functions explains 72% of N2O emission from all organic soils. Above 5 mg NO3--N kg-1, either draining wet soils or irrigating well-drained soils increases N2O emission by orders of magnitude. As soil temperature together with NO3- explains 69% of N2O emission, tropical wetlands should be a priority for N2O management.

7.
Sci Rep ; 5: 16931, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26603894

RESUMO

Mixotrophic protists are increasingly recognized for their significant contribution to carbon (C) cycling. As phototrophs they contribute to photosynthetic C fixation, whilst as predators of decomposers, they indirectly influence organic matter decomposition. Despite these direct and indirect effects on the C cycle, little is known about the responses of peatland mixotrophs to climate change and the potential consequences for the peatland C cycle. With a combination of field and microcosm experiments, we show that mixotrophs in the Sphagnum bryosphere play an important role in modulating peatland C cycle responses to experimental warming. We found that five years of consecutive summer warming with peaks of +2 to +8°C led to a 50% reduction in the biomass of the dominant mixotrophs, the mixotrophic testate amoebae (MTA). The biomass of other microbial groups (including decomposers) did not change, suggesting MTA to be particularly sensitive to temperature. In a microcosm experiment under controlled conditions, we then manipulated the abundance of MTA, and showed that the reported 50% reduction of MTA biomass in the field was linked to a significant reduction of net C uptake (-13%) of the entire Sphagnum bryosphere. Our findings suggest that reduced abundance of MTA with climate warming could lead to reduced peatland C fixation.


Assuntos
Carbono/metabolismo , Mudança Climática , Bactérias/metabolismo , Biomassa , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Ecossistema , Metabolismo Energético , Fungos/metabolismo , Sphagnopsida/metabolismo
8.
Sci Total Environ ; 511: 576-83, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25590538

RESUMO

Several studies on the impact of climate warming have indicated that peat decomposition/mineralization will be enhanced. Most of these studies deal with the impact of experimental warming during summer when prevalent abiotic conditions are favorable to decomposition. Here, we investigated the effect of experimental air warming by open-top chambers (OTCs) on water-extractable organic matter (WEOM), microbial biomasses and enzymatic activities in two contrasted moisture sites named Bog and Fen sites, the latter considered as the wetter ones. While no or few changes in peat temperature and water content appeared under the overall effect of OTCs, we observed that air warming smoothed water content differences and led to a decrease in mean peat temperature at the warmed Bog sites. This thermal discrepancy between the two sites led to contrasting changes in microbial structure and activities: a rise in hydrolytic activity at the warmed Bog sites and a relative enhancement of bacterial biomass at the warmed Fen sites. These features were not associated with any change in WEOM properties namely carbon and sugar contents and aromaticity, suggesting that air warming did not trigger any shift in OM decomposition. Using various tools, we show that the use of single indicators of OM decomposition can lead to fallacious conclusions. Lastly, these patterns may change seasonally as a consequence of complex interactions between groundwater level and air warming, suggesting the need to improve our knowledge using a high time-resolution approach.


Assuntos
Mudança Climática , Ecossistema , Microbiologia do Solo , Solo , Sphagnopsida , Temperatura
9.
Glob Chang Biol ; 19(3): 811-23, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23504838

RESUMO

Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands.


Assuntos
Aquecimento Global , Interações Hospedeiro-Patógeno , Sphagnopsida/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...